Sous vide cooking and chemistry

Douglas E. Baldwin

Department of Applied Mathematics University of Colorado at Boulder

ACS Webinar — May 9, 2013

How often do you cook?

- (a) Cook almost everyday.
- (b) Not daily, but quite a lot.
- (c) Only for special occasions.
- (d) Almost never.

sous vide /su: 'vi:d/ adjectival & adverbial phr.
L20. [ORIGIN French, from sous under
+ vide vacuum.]

Of food: (prepared) by cooking in vacuumized pouches at precisely controlled temperatures.

Optimal food temperatures

Beef, lamb, and pork

```
~50 °C Rare
~55 °C Medium-rare
~60 °C Medium
>70 °C Well done
```

- Fish and shellfish
 - ~49 °C Medium-rare
- Baked goods
 - ~90 °C Breads, rolls, muffins, etc.

Common kitchen heat sources

```
~70 °C Slow-cooker
       100 °C Boiling water
  125–200 °C Oven
  150-250 °C Skillet
  200-350 °C Grill
1500–2000 °C Blowtorch
```

Sous vide cooking:

- Cook at the food's optimal temperature.
- If 55 °C is medium-rare,
 then use a 55 °C water-bath
 - \Rightarrow meat can't exceed 55 °C
 - \Rightarrow nothing overcooked
 - \Rightarrow medium-rare from edge to edge

Vacuum-sealing benefits

- Removing air improves heat transfer
- Increases shelf-life
 - · Food can't be recontaminated
 - Inhibits off-flavors from oxidation
 - Reduces aerobic bacterial growth
- Improves nutrition and flavor
 - Stops flavor volatile evaporation
 - Stops nutrients leaching into water

Outline

- Soft-cooked eggs
 - Protein denaturation
- Beef chuck roast
 - How heating changes meat
 - Extended heating tenderizes
- Chicken breasts
 - Pasteurizing for safety

Protein denaturation

Protein denaturation

- Heat cooking, baking, ...
- Mechanical agitation whipping
- pH change vinegar, lemon juice, ...
- Inorganic salts curing and brining
- Organic compounds alcohol marinades
- Detergents cleanup

Yolk temperatures in 75 °C water

Measured yolk temperatures of 14 chicken eggs.

Reaction rate

- Temperature
 - Arrhenius reactions:
 - 10 °C increase roughly doubles rate
 - Yolk denaturation:
 - 1 °C increase roughly doubles rate
- Catalysts
 - Enzymes catalyze biochemical reactions
- Concentration

When you grill meat or poultry, do you

- (a) always use a thermometer to see when it's done,
- (b) sometimes use a thermometer, or
- (c) never use a thermometer?

Meat proteins

Meat's about 75% water, 20% protein, and 5% fat and other substances.

Proteins:

- Muscle fibers
 - mostly myosin & actin
- Soluble proteins
 - mostly enzymes and myoglobin
- Connective tissue
 - mostly collagen, less elastin

Meat protein denaturing

In traditional cooking when heating:

- Muscle fibers shrink
 starting 35–40 °C up to ~80 °C
- Soluble proteins aggregate and gel starting ~40 °C and finishing ~60 °C
- Connective tissues shrink starting ~60 and more intensely above ~65 °C

Doneness

- 50 °C Rare muscle fibers and soluble proteins start denaturing
- 55 °C Medium-rare more muscle fibers and soluble proteins denature
- 60 °C Medium
 - most soluble proteins denatured
- >70 °C Well done
 - connective tissue start denaturing
 - muscle fibers squeeze out water

If you eat beef, do you prefer it

- (a) rare,
- (b) medium-rare,
- (c) medium, or
- (d) well done?

If 55 °C is medium-rare, why not cook at 55°C?

You can with sous vide cooking.

Slower reactions tenderize

Holding meat at 55-60 °C for hours to days increases tenderness because

- Enzymes can catalyze connective-tissue protein hydrolysis
- Collagen slowly starts to denature around 51 to 53 °C

Beef chuck roast

Meat flavor

- 1. Browning or Maillard reaction
 - Roast and savory flavors
 - Starts noticably ~130 °C
 - Good browning starts \sim 150 °C
- 2. Fat makes
 - lamb taste like lamb and
 - beef taste like beef.

Maillard reaction

- Complex reaction between amino acids and reducing sugars
- Produces hundreds of reaction by-products
- Reaction rate increased by
 - Increasing temperature
 - Adding a reducing sugar
 - Increasing the pH

Rapid browning methods

- Beef and lamb
 - Butane blowtorch
 - Very hot grill or broiler
- Chicken and pork
 - Pan with smoking-hot oil
 - Shimmering oil with 4% glucose wash
 - Very hot grill or broiler

Beef chuck roast

- 1. Preheat water to 55 °C for medium-rare
- 2. (OPTIONAL) Pre-sear with blowtorch or grill
- 3. Vacuum-seal roast in a large pouch
- 4. Put into water bath for 1−2 days
- 5. Remove from pouch and pat dry
- 6. Sear each side to a mahogany brown
- 7. Season and serve immediately

When do you stop cooking a chicken breasts?

- (a) When it's juices run clear.
- (b) When it's white when you cut into it.
- (c) When it reaches 75 °C/165 °F.
- (d) When it's dry and stringy.
- (e) Some other criteria.

Food microorganisms

Many ways to reduce pathogens

- Heat both time and temp important
- Inorganic salts curing
- pH changes acidifying
- Herbs and spices essential oils
- Mechanical agitation very high pressures
- Alcohol marinades
- Ionizing radiation not for home kitchens

"Danger Zone"?

- ► Traditional "danger zone" is 5 to 60 °C
- ▶ Food pathogens don't grow below −1.3 °C
- Food pathogens don't grow above 52.3 °C
- Dangerous growth takes days at 5 °C
- ► Pasteurization takes 43 min at 60 °C but 3 hr 20 min at 55 °C

Pasteurization reduces risk

- Reduce but can't eliminate pathogens
- Healthy may need 10⁵ to 10⁹ to get sick
- ► Immunocompromised 1–10/g to get sick
- ▶ 15–20% of US immunocompromised
- ▶ $10^6 \rightarrow 1$ reduction usually recommended

Pathogens of interest

- Salmonella species
- Pathogenic strains of Escherichia coli
- Listeria monocytogenes the toughest
 - ▶ $10^6 \rightarrow 1$ after 2 min at 70 °C
 - ▶ $10^6 \rightarrow 1$ after 20 min at 62.5 °C
 - ▶ $10^6 \rightarrow 1$ after 200 min at 55 °C
- Spore forms, like the Clostridium species

Sous vide chicken breasts

- 1. Preheat water bath to 60 °C.
- 2. Individually vacuum-seal the breasts.
- 3. Put sealed pouches in water bath.
- 4. Cook them for at least 2 hours.
- 5. Remove from bath and pouches. Pat dry.
- 6. Sear in a skillet with smoking-hot oil.
- 7. Serve immediately.

Balance time and temperature

Pork chops

- ▶ Medium-rare to medium \Rightarrow 55–60 °C
- ► Moderately tender
- \Rightarrow short to moderate cooking times
- ▶ 60 °C & 20 mm thick
 ⇒ 1½ hours to pasteurize

Filet mignon

- ▶ Rare to medium-rare \Rightarrow 50–55 °C
- ▶ Prized tenderness ⇒ short cooking time
- ► 50–55 °C & short time \Rightarrow can't pasteurize \Rightarrow healthy people only
- 50 °C ⇒ pathogen growth⇒ minimize time
- ▶ 55 °C \Rightarrow short time *or* mushy texture

Additional Resources

- www.DouglasBaldwin.com
 - Free sous vide cooking guide
 - YouTube video demos
 - Review article [IJGFS vol. 1 (2012) pp. 15–30]
- ▶ D.B.'s Sous Vide for the Home Cook (2010)
 - Over 200 recipes
 - Less technical than website or review article
- Other food science books:
 - H. McGee's On Food and Cooking (2004)
 - N. Myhrvold et al.'s Modernist Cuisine (2011)

